Osmotic Pressure Induced Coupling between Cooperativity and Stability of a Helix-Coil Transition.
نویسندگان
چکیده
Most helix-coil transition theories can be characterized by three parameters: energetic, describing the (free) energy cost of forming a helical state in one repeating unit; entropic, accounting for the decrease of entropy due to formation of the helical state; and geometric, indicating how many repeating units are affected by the formation of one helical state. Depending on their effect on the helix-coil transition, solvents or cosolutes can be classified with respect to their action on these parameters. Solvent interactions that alter the entropic cost of helix formation by their osmotic action can affect both the stability (transition temperature) and the cooperativity (transition interval) of the helix-coil transition. Consistent inclusion of osmotic pressure effects in a description of helix-coil transition, for poly(L-glutamic acid) in solution with polyethylene glycol, can offer an explanation of the experimentally observed linear dependence of transition temperature on osmotic pressure as well as the concurrent changes in the cooperativity of the transition.
منابع مشابه
Virtual atom representation of hydrogen bonds in minimal off-lattice models of alpha helices: effect on stability, cooperativity and kinetics.
BACKGROUND The most conspicuous feature of a right-handed alpha helix is the presence of hydrogen bonds between the backbone carbonyl oxygen and NH groups along the chain. A simple off-lattice model that includes hydrogen bond interactions using virtual atoms is used to examine the stability, cooperativity and kinetics of the helix-coil transition. RESULTS We have studied the thermodynamics (...
متن کاملMolecular dynamics studies on the denaturation of polyalanine in the presence of guanidinium chloride at low concentration
Molecular dynamic simulation is a powerful method that monitors all variations in the atomic level in explicit solvent. By this method we can calculate many chemical and biochemical properties of large scale biological systems. In this work all-atom molecular dynamics simulation of polyalanine (PA) was investigated in the presence of 0.224, 0.448, 0.673, 0.897 and 1.122 M of guanidinium chlorid...
متن کاملCompetition for hydrogen-bond formation in the helix-coil transition and protein folding.
The problem of the helix-coil transition of biopolymers in explicit solvents, such as water, with the ability for hydrogen bonding with a solvent is addressed analytically using a suitably modified version of the Generalized Model of Polypeptide Chains. Besides the regular helix-coil transition, an additional coil-helix or reentrant transition is also found at lower temperatures. The reentrant ...
متن کاملHelix-Coil Transitions of a-Helical, Two-Chain, Coiled Coils
A theory of the helix-coil transition for in-register, two-chain, a-helical, coiled coils such as tropomyosin and paramyosin is developed. The treatment differs from those formulated previously for DNAor collagen-like double helices; in the present treatment, isolated single chains and each of the two strands in the dimer may be partially helical. We calculate the fraction of helix in the two-c...
متن کاملStacking and hydrogen bonding: DNA cooperativity at melting.
By taking into account base-base stacking interactions we improve the Generalized Model of Polypeptide Chain (GMPC). Based on a one-dimensional Potts-like model with many-particle interactions, the GMPC describes the helix-coil transition in both polypeptides and polynucleotides. In the framework of the GMPC we show that correctly introduced nearest-neighbor stacking interactions against the ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 109 6 شماره
صفحات -
تاریخ انتشار 2012